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On the Approximate Solution of Aircraft Landing Gear Under
Nonstationary Random Excitations
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The motion of an aircraft landing gear over a rough runway can be modeled by a nonclassical
ly damped system subject to nonstationary random excitations. In this paper, the approximate
analysis methods based on either the real or complex normal modes for the computation of
nonstationary response covariances are proposed. It has been found by simulation involving a
realistic example that, for the nonclassically damped random vibrational systems, the approxi
mate solution method based on the complex normal mode is superior to other approaches with
respect to the accuracy and computation time.
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1. Introduction

During take-off and landing, an aircraft land
ing gear is subjected to random excitations arising
from the surface roughness of a landing strip
(Yadav and Nigam, 1978 ; Soong and Mircea,
1993 ; Sobczyk et al., 1977 ; Virchis and Robson,
1978). The level of aircraft vibration due to such
random excitations needs to be taken into account
during structural design not only to guarantee the
structural integrity but also to protect the cargo
and on-board instrumentation. The analysis and
design of an aircraft landing gear by applying the
probabilistic approach can often yield better solu
tion compared with the traditional factor-of
safety approach based on the deterministic design.

The surface roughness of a landing strip is
transformed into a time varying random excita-
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tion by appropriate modeling of the aircraft
motion and the assumed point contact between
the aircraft wheel and the landing strip. Gener
ally, the randomness of the surface roughness can
be treated as a homogeneous random process.
Under this condition, the surface excitation of the
landing surface becomes a stationary random
process for the case of a constant aircraft velocity,
and a nonstationary random process for the case
of the variable aircraft velocity(Caughey, 1963 ;
Hammond and Harrison, 1981 ; Newland, 1975).
Except for the initial landing stage during which
a large impulsive load is acting, the aircraft land
ing gear can be modeled as a linear system.
Therefore, the present study is concerned with the
dynamic analysis of the landing gear in which a
nonstationary random excitation is applied to the
linearized model of the landing gear system.

When the excitation is a random process, the
response covariance is usually obtained by using
either the impulse response function or the fre
quency response function (Caughey, 1963; Ham
mond and Harrison, 1981; Newland, 1975; Cran
dall and Mark, 1963). For the case of non
stationary random process, however, these
methods tend to be computationally inefficient.
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To overcome this deficiency, analytical methods
based on the state-space approach have been
proposed, and the methods have been applied to
the dynamic analysis of the aircraft landing gear
(Hammond and Harrison, 1981; Hwang et al.,
1997a; 1997b). The state-space approach is
computationally more efficient than solving the
integrations involved in the response function
methods, and especially suited for obtaining the
nonstationary random responses due to the vari
able aircraft velocity. The state-space approach
can be divided into two steps : The first step
involves deriving the covariance propagation
equation corresponding to the state equations in
the physical coordinate space. The second step
involves solving the propagation equation
through numerical analysis. The main advantage
of the state-space approach is that the exact
covariances can be obtained by directly solving
the covariance propagation equations. Since these
equations are in the matrix form, however, the
amount of the computation rapidly increases as
the degrees-of-freedom of the random system is
increased. To address this problem, approximate
analysis methods based on the modal analysis
technique are proposed.

The methods for obtaining an approximate
solution of nonstationary random vibration prob
lems by applying the modal analysis technique
can be divided into two main categories. The first
method uses the real normal modes. The advan
tages of the method are that the computation is
relatively simple and that the real coordinate
space is involved. For the case of nonclassically
damped vibrational systems, however, large
computational errors may be generated. The rea
son is that to use the real normal modes, non
diagonal elements of the transformed modal
damping matrix must be neglected. In addition,
statistical correlations between the modal coordi
nate have been ignored. For proportionally
damped systems, however, the error may be quite
acceptable, as there is no non-diagonal element to
be neglected in the first place, and the errors are
due to ignoring statistical correlations only. The
second method uses the complex normal modes.
Since the off-diagonal elements of the transfor-

med modal damping matrix are accounted for, the
accuracy of the solution will be improved. The
error generated here is solely due to ignoring the
correlation between the modal coordinates. The
additional computation due to applying the com
plex normal modes can be minimized by noting
that the modes occur in the complex conjugates.
For these reasons, the complex normal mode
method is particularly suited for solving the
nonclassically damped systems. In the present
study, two approximation methods for solving the
nonstationary random vibration problems are
proposed. The methods are then applied to an
example involving the aircraft landing gear. The
approximate solutions are compared with the
exact one. The proposed methodology can be
applied to any dynamical systems with finite
degrees-of-freedom subjected to random base
excitations.

2. Modeling the Landing Gear and
Landing Strip Surface

For dynamic analysis purpose, the aircraft
landing gear can be modeled as a two degrees-of
freedom vibrational system composed of the
upper spring-mass-damper corresponding to the
aircraft structure and the shock absorber and the
lower spring-mass-damper corresponding the
wheel/tire assembly. The shock absorber for
absorbing the landing impact can be modeled as
a spring-damper. Depending on the range of
motion, the shock absorber can either be modeled
as a linear spring-damper or a nonlinear spring
damper. In the present study, the absorber is
modeled as a linear system shown in Fig. 1 by
assuming a small range of motion. The linearized
spring and damping constants are derived from
the specification for the landing gear adapted
from KTX-l aircraft used for the pilot training.
The contact between the landing gear and the
landing strip surface is modeled as a point con
tact. Neglecting all external forces except for the
excitation due to the surface roughness, the equa
tions of motion are given as follows:

(1)
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Fig. 1 Simplified model of aircraft landing gear

The variables in Eq. (1) are shown in Fig. 1. The
lumped mass elements ml and mz denote the mass
of the aircraft and wheel/tire assembly, respective
ly. The elements k1 and Cl denote linearized
spring and damping coefficients of the shock
absorber, while k2 and C2 denote linearized spring
and damping coefficients of the tire. The surface
profile of the landing strip is given by the variable
h(s) .

The randomness of the landing strip surface
can usually be assumed to be a homogeneous
random process. Under this assumption, if the
aircraft velocity is constant, the excitation from
the rough surface becomes a stationary random
process, whereas for the variable aircraft velocity
the surface excitation becomes a nonstationary
random process. From among the various statisti
cal models of the aircraft landing strip, the most
widely used model can be expressed by the equa
tion (Virchis and Robson, 1978)

where

3. Analysis using the State-Space
Method

w (s) =white noise with zero mean

E[W(SI)W T(S2)]=QO (SI-S2)

k w= aJ2a (magnitude of the white noise)
<1=standard deviation of h
a=correlation parameter
s=space variable

The height h(s) given by Eq. (3) is a homogene
ous random process. To express a nonstationary
random process h(t) in the case of the variable
aircraft velocity, Eq. (3) can be transformed by
applying the chain rule

h=- s ah-r skww(s(t) (4)

where

The response analysis of the aircraft landing
gear subjected to a nonstationary random excita
tion by the application of the state-space
approach (Hwang et at., 1997a) is briefly de
scribed here. Expressing the landing gear and the
surface of the landing strip in the state-space, the
following equations are obtained. For conve
nience, all state variables have been normalized
by <1, which is the standard deviation of h

~1~[-:_lK _~-lC (-M-1Ch:atM-1Kh)] ~
dta 00 .

h -sa ~

6 a

+;[M-~] w[s(t)] (5)
where the functional form of s (t) is restricted so
that it satisfies the condition v (t) = s (t) ?=O.
Equation (5) can be expressed in the form of

i (t) =Ax (t) + s (t) Bw[s (t)] (6)
(2)

a

vetl )

y1(l1

k1

hlal

The surface roughness expressed by Eq. (2) can
be attained by passing the white noise through a
first-order shape filter

dh _ ( )(F+ ah- kww s (3)



On the Approximate Solution of Aircraft Landing Gear Under Nonstationary Random Excitations 971

4. Approximate Method Based on the
Real Normal Modes

The covariance propagation equation correspond
ing to equation (6) can be derived as follows
(Hwang et al., 1997a)

P=AP+ PAT + sBQBT (8)

In this section, a method for obtaining an
approximate solution of the covariance for the
random vibrational system (1) by using the real
normal modes is presented. The method presented
here combines the modal analysis technique and
the state-space approach described in Sec. 3. By
the orthogonality of the vibrational modes of the
system, the equations of motion are decoupled in
the modal coordinates. On each decoupled modal
equation the state-space method can then be
applied. In comparison with the method of Sec. 3
in which the covariance propagation Eqs. (8) are

solved in the physical coordinates, the method
proposed here achieves substantial savings in the
computational load. However, after the covarian
ces of the modal coordinates are computed, an
inverse transformation needs to be performed to
obtain the covariance for the physical coordi
nates. During the inverse transformation, the
statistical correlations between the modal coordi
nates are usually neglected since they are not
known. In this sense, the present method is an
approximate method.

For the case of the proportionally damped
random vibrational systems, the error generated
by the approximation scheme is due to neglecting
the statistical correlation between the modes only.
For nonclassically damped system, however, the
modal equations of motion cannot be decoupled.
For the present method to be applicable, the off
-diagonal elements of the transformed modal
damping matrix need to be neglected. In this way,
the additional approximation error is introduced
by neglecting the off-diagonal terms on top of the
error due to ignoring the statistical correlation the
modal coordinates. Hence, the method expounded
here is suitable for the proportionally damped
systems. In the next section, a method based on
the complex normal modes will be introduced for
tackling the nonclassically damped vibrational
systems.

Upon obtaining the real eigensolution of M, K
matrices in the system Eq. (I), the modal matrix
S can be constructed from the eigenvectors. The
following coordinate transformation can then be
performed

y=Sx. (9)
Substituting Eq. (9) into Eq. (1) and premulti
plying by ST, the following equations in the
modal coordinates can be obtained

x+Ci +Ax=Csh+Ksh (10)

(7)

B~[M-~]
E[W(SI)WT(52)]=Q8 (51-S2)

where the matrix P expresses covariance matrix
for 5 state variables. The initial conditions
applied in the present study come in two types.
The first type corresponds to the case of the
aircraft taking off from rest. The second type
corresponds to the case of the aircraft moving
with a constant velocity before coming in contact
with the landing strip. For the purpose of analyz
ing the dynamic response of the system subjected
to a nonstationary random input, the state-space
method described here is more effective than the
usual methods involving the impulsive response
function or the frequency response function
(Hwang et al., 1997a). Since the covariance prop
agation Eq. (8) is a matrix equation, however, the
amount of computation rapidly increases for in
creased degrees-of-freedom of the system. For n

state variables, the number of equations that
needs to be solved is given by n(n+l) /2. To
overcome this problem, an approximate method
based on the modal analysis is proposed in the
next section.
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If the system is proportionally damped, the modal
damping matrix is given by

e{"~W'? ~ ]
o 0 2Snwn

For the nonclassically damped system, however,
the off-diagonal elements of the transformed
modal matrix must be neglected for the applica
tion of the approximation method based on the
real normal modes to be feasible. Applying the
state-space approach on each of the modal coor
dinates in Eq. (lO), the state equations can be
written as follows

By deriving the covariance propagation equation
from the above equation and performing numeri
cal integration, the covariance for i-th mode can
be obtained. From the covariances for the modal
coordinates, the covariance for the physical coor
dinates can be obtained though a suitable coordi
nate transformation

E{[2J-T}=si/E{[~ T}+Si22E{[ X;; T}
+"'+Si/E{[X; T} (13)

The approximation method based on the real
normal modes presented in this section is
computationally very efficient. For the nonclas
sically damped systems, however, the modal coor
dinates are still coupled by the off-diagonal ele
ments of the modal damping matrix. If the present
method is applied to the nonclassically damped
systems, the error due to neglecting the off-diago
nal elements of the modal damping matrix on top
of the error due to neglecting the statistical corre
lation between the modal coordinates means the
total error could be quite substantial.

5. An Approximation Method Based on
the Complex Normal Modes

In this section, an approximation method based
on the complex normal modes that can be used to
solve the nonclassically damped vibrational sys
tems is introduced. The equations of motion given
by Eq. (I) can be rewritten in the form of the

following state equations, with Xl = y, X2= Y

[~ ~J[~:J+[-oM ~][::J

=[~Jh+[;Jh (14)

(12)

Rewriting Eq. (14) in the expanded vectors and
matrices,

where Q denotes the complex modal coordinate
vector. Applying Eq. (16) in Eq. (15) and rear
ranging,

VTMs VQ+ VTKs VQ= VTChSh+ VTKhSh (17).

(15)

(16)X=VQ

where u; K; X, c.; KhS can readily be ascer
tained by comparing Eqs. (14) and (15). In the
proposed complex modal analysis, the complex
eigensolutions of M s and K, in Eq. (15) are first
computed. By then applying the modal matrix V
composed of the complex eigenvectors, the follow
ing coordinate transformation can be performed

[t ]=[S;1.;. s;n][~1
ft Snl ... Snn Xn

(J (J

By taking the second moment of Eq. (12), the

variance of L can be derived as follow
(J

L=S~
(J (J

E{[2J-T}=E{[ Sil~ +Si2~ +...

+ Sin X; T} (i=I, 2, "', n)

By neglecting the correlation between the modal
coordinates, the following equation can be
obtained
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where

VTMsV=I, VTKsV=Q

=diag[wb W2, "', W2n],
VTChS= (j), VTKhS= If!

Equation (17) can be written in the simplified
form of

qr=ijr+h Wr=Wr+b rPr=¢Jr+h If!r=iJfr+1
(r=l, 3, "', 2n-l)

Reducing the number of Eq. in Eq. (18) in half
and expanding the real and imaginary parts sepa
rately,

(22)

modal coordinate can be obtained, i. e., the fol
lowing quantities can be computed

6. Results and Discussion

QRl=[qlR ql1 q3R q31 ... q(2n-llR q(2n-l)1)T

WR1= [ViRl ViRl ... V(2n-llRl]
VrRl=2[ReVr - Im Vr] (r=l, 3, ... , 2n-l)

where

Utilizing the fact that qn ui-, rPn If!r(r=l, 3, ''',
2n - I) possess the complex conjugates, the covar
iances for complex modal coordinates can be used
to compute the covariances for the physical coor
dinates by the following transformation

Vr denotes r-th complex eigenvector. If the statis
tical correlations between the complex modal
coordinates are neglected, the covariances for the
physical coordinates can be expressed in a form
similar to Eq. (13). Since the approximation
based on the complex normal modes presented in
this section does not entail any error other than
that due to neglecting the statistical correlation
between the modes, it can be particularly suitable
for obtaining the solutions of the nonclassically
damped systems. In comparison with the method
based on the real normal modes, the present
method is clearly superior with respect to the
accuracy without any increase in the
computational effort required.

(18)Q+QQ=(j)h+ 1Jfh

Since Q is a diagonal matrix, Eq. (18) represents
a set of decoupled equations in the modal coordi
nates. The state-space approach described in Sec.
3 can be individually applied on each complex
modal coordinate, substantially reducing the
amount of computation. Since Q, Q, (j), If! are all
composed of the complex conjugate pairs, the
number of equations that needs to be solved is
only half of the total number of the modes

(qrR+iqrl) + (wrR+iwrl) (qrR + iqrl)

= (rPrR + irPrl) h + ( If!rR + i1Jfrl) h (19)

q rR + ui-sq-» - Wrlqrl = rPrRh+ If!rRh Real parts
(20)

qrl+WrlqrR+WrRQrl=rPrlh+ If!rlh Imaginaryparts
(r=l, 3, "', 2n-l)

In Eqs. (19) and (20), subscripts R and I denote
the real and imaginary parts, respectively. By
applying the state-space approach, the following
set of state equations for the individual modes can
be obtained.

By first deriving and then solving the covariance
propagation equations, the covariances on r-th

[

- WrR Wrl

= -;rI -~rR
..9..IL

(J

h
(J

[

rP rR .fI(i]
+ S rPrl.fI(i W (s (t»

.fI(i

(r=l, 3, "', 2n-I).

(21)

To demonstrate the analytical results developed
in the previous sections, the approximation
methods are applied to an example problem
involving an aircraft landing gear subjected to a
nonstationary random excitation. The parameters
given for the landing gear are based on KTX-I
trainer aircraft. The parameters are summarized
in Table 1. The initial condition applied here
corresponds to the case of the aircraft taking off
from rest.

During the execution of the numerical algorith-
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m, the coefficient a representing the surface
roughness of the runway has been set at 0.5. The
greater the value of, the closer the randomness of
the surface to the white noise. Assuming the
constant acceleration, the velocity v (t) is given
by the function lOt.

To evaluate the effectiveness of the proposed
methods, the covariances of the response have
been computed for each of the three solution
methods. They are : the exact analysis in the
physical coordinates by applying the state-space
approach; the approximate method based on the
real normal modes; and the approximate method

Table 1 Parameters of an aircraft landing gear

Parameter Name Numerical Value(SI)

Sprung Mass I I89.2(kg)

Unsprung Mass 19.1(kg)

Stiffness Coefficient of 57831.6(N jm)

Absorber

Stiffness Coefficient of 900000(Njm)

Tire

Damping Coefficient of 6455.9(Nsjm)

Absorber

Damping Coefficient of O(Nsjm)
Tire

based on the complex normal modes. For each
case, the covariances of the response of the air
craft landing gear subjected to a nonstationary
random excitation are computed. The comparison
of the results for the three cases is also provided.
Since the first method in the physical coordinates
yields the exact solution for linear random vi
brational systems, it can be used to evaluate the
errors due to the two approximation methods.
The landing gear considered in this section is
readily seen to be a nonclassically damped sys
tem. Based on the previous analysis, the method
using the real normal modes can be expected to
yield greater error than the method using the
complex normal modes.

The aircraft displacement covariances are
computed and shown in Fig. 2. A substantial
discrepancy exists between the result of the
approximate method based on the real normal
modes and the exact solution. In contrast, the
solution based on the complex normal modes
almost coincides with the exact solution. The
wheel/tire vertical displacement covariances are
computed and shown in Fig. 3. Again, the com
plex normal mode solution lies between the nor
mal mode solution and the exact solution. The
reason is, as mentioned before, that the landing
gear is a nonclassically damped system. The com-
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· .· .· .

...............: : .

-.- Exact Method

---- Real Mode Method
~ Complex Mode Method

........~ _ _ : _ : - .

0.40

0.80

· .· .1.20 ~ ~ .--------...;....----'----,
· .· .· .· .· .· .1.00 ~ ; .
· .

0.20

P 0.60
11

0.00 ; (..
· .

· .. ; :- ; .
· .· .

302520105 15

Time(sec)

Fig. 2 Comparison of covariance of aircraft displacement (Yl)

o
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Fig. 3 Comparison of covariance of wheel/tire displacement(Y2)
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Fig. 4 Comparison of covariance of aircraft velocity (y1)

o

parison of the aircraft body velocity covariance is
provided in Fig. 4. The real normal mode solu
tion shows a large deviation from the exact solu
tion. In marked contrast, the complex normal
mode solution is much closer to the exact solu
tion. To obtain the real normal mode solution of
the nonclassically damped landing gear system,
the off-diagonal elements of the transformed
modal damping matrix had to be neglected. The
resulting error is especially large for H3 (t).

Indeed, this particular case reserved to motivate
the authors to develop an approximate analysis
based on the complex normal mode. Finally, the
wheel/tire assembly velocity covariances are
presented in Fig. 5. Although the errors are small,
the results qualitatively similar to the previous
cases are observed.
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Fig. 5 Comparison of covariance of wheel/tire velocity(Y2)

7. Conclusions

The methods for obtaining approximate solu
tions of the aircraft landing gear dynamics are
proposed. The exact analysis method in the physi
cal coordinates based on the application of the
state-space approach entails rapidly increasing
computational load as the degrees of freedom of
the system is increased. The approximate solution
methods proposed in the present study are devel
oped in the modal coordinate space and are
computationally efficient for systems possessing
high degrees of freedom. The exact and approxi
mate analyses are applied to an example involv
ing KTX -1 trainer aircraft, and their results
compared. Although the approximate analysis
based on the real normal modes can be quite
effective for solving the proportionally damped
systems, large approximation error may develop
for the nonclassically damped systems. For such
systems, the approximate analysis based on the
complex normal modes is more adequate. This
method improves on the approximation error and
yet entails essentially the same computational
load as the method based on the real normal
modes. The improved accuracy stems from the
fact that the off-diagonal elements of the transfor-

med modal damping matrix are accounted for.
The amount of computation is similar to the real
mode analysis since the number of the complex
modal coordinates that need to be solved is cut in
half by utilizing the property that the modes occur
in the complex conjugate pairs. By a realistic
example, the approximate method based on the
complex normal modes has shown to be highly
effective for solving the nonclassically damped
random vibrational systems.
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